Towards the Quantification of Rainwater Tank Yield in South East Queensland by Considering the Spatial Variability of Tanks

Esther Coultas
Total Water Cycle Management Planning

Science Forum, 19-20 June 2012
TALK OUTLINE

• Outline
 – Project background
 – Developing a method to quantify rainwater tank yield at the SEQ scale
 – Results
 – Conclusions
Use of household rainwater tanks

- Capital cities: 15% in 2007 and 26% in 2010
- Queensland: 18% in 2007 and 43% in 2010 (largest increase of all cities)
- 70 kL/year mandatory water savings target for all new houses in Qld
- Internally plumbed RWTs contribute to achieving this target

Source: ABS, March 2010
Yield of household rainwater tanks

- As the uptake of tanks increases, there is a need for quantifying the yield at the SEQ scale
 - To assess SEQ’s supply and demand balance
- Common practice is linear up-scaling of the yield of a tank with average tank characteristics
 - Can introduce errors because tank yield is not linearly related to tank characteristics

Source: SEQ Water Strategy, 2010
Variability exhibited by rainwater tanks in SEQ

- Beal *et al.* (2012) study based on 2008 water consumption data
 - 20 kL/h/y to 95 kL/h/y, with a mean of 50 kL/h/y

- Chong *et al.* (2011) study based on 2009 and 2010 consumption data
 - 24.5 kL/h/y to 88.5 kL/h/y, with a mean of 58.8 kL/h/y
Objectives of the study

• To develop a method to account for the spatial variability of supply from rainwater tanks, for the prediction of potable water savings at the SEQ scale.

• To understand the extent of error caused to tank yield by ignoring the spatial variability.
The method: Monte Carlo simulation of rainwater tank yield

Probabilistic representation of residential end uses; improvements made to Duncan and Mitchell (2008) method

Probability distributions to represent spatial variability of tank sizes, effective roof area and roof losses; improvements made to Mitchell et al. (2008) rainwater tank model
Spatial variability exhibited by the input data

- Household water consumption in Brisbane (61 SFR households): 30 - 650 L/p/d
- Connected roof area (20 houses in SEQ): 37 – 135 m²
- Tank sizes (106 tanks in Brisbane): 4 – 22 kL
Monte Carlo Simulation: input variables (tank)

<table>
<thead>
<tr>
<th>Units</th>
<th>Tank size</th>
<th>Effective roof area</th>
<th>Initial loss</th>
<th>Continuing loss</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>2.5 kL</td>
<td>27.0 m²</td>
<td>0 mm</td>
<td>0 %</td>
<td>1 No.</td>
</tr>
<tr>
<td>Mean</td>
<td>5.1 kL</td>
<td>76.6 m²</td>
<td>0.5 mm</td>
<td>15 %</td>
<td>2.6 No.</td>
</tr>
<tr>
<td>Maximum</td>
<td>25.0 kL</td>
<td>135.0 m²</td>
<td>1.8 mm</td>
<td>30 %</td>
<td>6 No.</td>
</tr>
<tr>
<td>Probability distribution</td>
<td>Truncated Normal</td>
<td>Truncated Normal</td>
<td>Truncated Normal</td>
<td>Truncated Normal</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.1 kL</td>
<td>28.8 m²</td>
<td>0.5 mm</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>106</td>
<td>20</td>
<td>Unknown (literature based)</td>
<td>Unknown (literature based)</td>
<td>61</td>
</tr>
</tbody>
</table>
Monte Carlo Simulation: input variables (demand)

- Sampling from 200 plausible demand time series
 - Generated by calibrating the Stochastic Demand Model of Duncan and Mitchell (2008) using 61 household end use demands in Brisbane

- Tank water is used for toilet, laundry and garden use
 - About 50% of the total household use

Per capita observed end use break down - Brisbane

- Toilet: 22.0 L/p/d (17%)
- Clothes Washer: 15.8 L/p/d (27%)
- Tap: 22.7 L/p/d (17%)
- Dishwasher: 2.3 L/p/d (2%)
- Shower: 38.6 L/p/d (30%)
- Irrigation: 7.2 L/p/d (6%)

Total average = 130.4 L/p/d

Per capita modelled end use break down - Brisbane

- Toilet: 20.3 L/p/d (15%)
- Clothes Washer: 18.0 L/p/d (29%)
- Tap: 27.4 L/p/d (20%)
- Dishwasher: 2.3 L/p/d (2%)
- Shower: 38.4 L/p/d (25%)
- Irrigation: 5.7 L/p/d (4%)

Total average = 134.1 L/p/d
Tank yield for different iterations of Monte Carlo simulation
Monte Carlo simulation on a daily time step

Average annual yield of 10,000 houses over 50 year (1960-2010) daily simulation

47 kL/h/y (14% overestimation) 41 kL/h/y
Monte Carlo simulation on an hourly time step

Average annual yield of 10,000 houses over 50 year (1960-2010) hourly simulation

46 kL/h/y (14% overestimation)

40 kL/h/y
Comparison with yield estimated from billing data

- QWC study: Billing records of 1841 single family residential houses in Brisbane during the period from January 2011 to June 2011
 - The sample had 120 houses with internally plumbed rainwater tanks (IPR) and 1721 SFR houses without IPR
 - Compared the average household consumption of the two samples
 - The estimated average yield: 39 L/p/d or 37 kL/h/y (considering an occupancy rate of 2.6 p/h)

- Our study (stochastic simulation): 40 kL/h/y
Conclusions

- Tank sizes, connected roof areas and household end uses vary spatially.
- We examined the effectiveness of Monte Carlo simulation of tank storage behaviour to represent this variability.
- Tank yield quantified through Monte Carlo simulation is 40 kL/h/y. This is about 30% of total household use in Brisbane.
- If the spatial variability of tank and water use characteristics are ignored, the tank yield will be overestimated by 14% (for Brisbane household data).
- Work in progress to repeat the analysis for Gold Coast, Sunshine Coast and Ipswich.
Acknowledgements

Co-authors - Shiroma Maheepala, Luis Neumann, Cara Beal, Rodney Stewart, Meng Chong and Ashok Sharma

Mark Askins, Tad Bagdon, Patricia Hurikino and Phillip Chan of the Queensland Water Commission for providing access to their study, tank data and the valuable advice

THANK YOU!

www.urbanwateralliance.org.au